COST ESTIMATE CLASSIFICATION SYSTEM - AS APPLIED IN ENGINEERING, PROCUREMENT, AND CONSTRUCTION FOR THE PROCESS INDUSTRIES
AACE International Recommended Practice No. 18R-97

COST ESTIMATE CLASSIFICATION SYSTEM – AS APPLIED IN ENGINEERING, PROCUREMENT, AND CONSTRUCTION FOR THE PROCESS INDUSTRIES

TCM Framework: TCM Cost Estimating and Budgeting

March 6, 2019

Note: As AACE International Recommended Practices evolve over time, please refer to web.aacei.org for the latest revisions.

Any terms found in AACE Recommended Practice 10S-90, Cost Engineering Terminology, supersede terms defined in other AACE work products, unless specifically stated. Any terms defined in other recommended practices, the Total Cost Management Framework, and Skills & Knowledge of Cost Engineering are marked by []

Contributors:

Disclaimer: The content provided by the contributors to this recommended practice is their own and does not necessarily reflect that of their employers, unless otherwise stated.

March 6, 2019 Revision:

Peter R. Bredehoeft, Jr. CEP (Primary Contributor) John K. Hollmann, CCP CEP DRMP FAACE Hon. Life (Primary Contributor)

Larry R. Dysert, CCP DRMP FAACE Hon. Life (Primary Contributor)

March 1, 2016 Revision:

Larry R. Dysert, CCP CEP DRMP (Primary Contributor) Dan Melamed, CCP EVP

Todd W. Pickett, CCP CEP

Laurie S. Bowman, CCP DRMP EVP PSP Richard C. Plumery, EVP

Peter R. Bredehoeft, Jr. CEP

November 29, 2011 Revision:

Peter Christensen, CCE (Primary Contributor) Kenneth K. Humphreys, PE CCE

Larry R. Dysert, CCC CEP (Primary Contributor) Donald F. McDonald, Jr. PE CCE PSP

Jennifer Bates, CCE C. Arthur Miller

Jeffery J. Borowicz, CCE CEP PSP Todd W. Pickett, CCC CEP

Peter R. Bredehoeft, Jr. CEP Bernard A. Pietlock, CCC CEP

Robert B. Brown, PE Wesley R. Querns, CCE

Dorothy J. Burton Don L. Short, II CEP

Robert C. Creese, PE CCE H. Lance Stephenson, CCC

John K. Hollmann, PE CCE CEP James D. Whiteside, III PE
TABLE OF CONTENTS

Table of Contents .. 1
Purpose .. 1
Introduction .. 2
Cost Estimate Classification Matrix for the Process Industries .. 2
Determination of the Cost Estimate Class .. 5
Characteristics of the Estimate Classes ... 6
Estimate Input Checklist and Maturity Matrix .. 12
Basis of Estimate Documentation ... 14
Project Definition Rating System ... 14
References ... 14
Contributors ... 15

PURPOSE

As a recommended practice (RP) of AACE International, the Cost Estimate Classification System provides guidelines for applying the general principles of estimate classification to project cost estimates (i.e., cost estimates that are used to evaluate, approve, and/or fund projects). The Cost Estimate Classification System maps the phases and stages of project cost estimating together with a generic project scope definition maturity and quality matrix, which can be applied across a wide variety of industries and scope content.

This recommended practice provides guidelines for applying the principles of estimate classification specifically to project estimates for engineering, procurement, and construction (EPC) work for the process industries. It supplements the generic cost estimate classification RP 17R-97[1] by providing:

- A section that further defines classification concepts as they apply to the process industries.
- A chart that maps the extent and maturity of estimate input information (project definition deliverables) against the class of estimate.

As with the generic RP, the intent of this document is to improve communications among all the stakeholders involved with preparing, evaluating, and using project cost estimates specifically for the process industries.

The overall purpose of this recommended practice is to provide the process industry with a project definition deliverable maturity matrix that is not provided in 17R-97. It also provides an approximate representation of the relationship of specific design input data and design deliverable maturity to the estimate accuracy and methodology used to produce the cost estimate. The estimate accuracy range is driven by many other variables and risks, so the maturity and quality of the scope definition available at the time of the estimate is not the sole determinate of accuracy; risk analysis is required for that purpose.

This document is intended to provide a guideline, not a standard. It is understood that each enterprise may have its own project and estimating processes, terminology, and may classify estimates in other ways. This guideline
provides a generic and generally acceptable classification system for the process industries that can be used as a basis to compare against. This recommended practice should allow each user to better assess, define, and communicate their own processes and standards in the light of generally-accepted cost engineering practice.

INTRODUCTION

For the purposes of this document, the term process industries is assumed to include firms involved with the manufacturing and production of chemicals, petrochemicals, and hydrocarbon processing. The common thread among these industries (for the purpose of estimate classification) is their reliance on process flow diagrams (PFDs), piping and instrument diagrams (P&IDs), and electrical one-line drawings as primary scope defining documents. These documents are key deliverables in determining the degree of project definition, and thus the extent and maturity of estimate input information. This RP applies to a variety of project delivery methods such as traditional design-bid-build (DBB), design-build (DB), construction management for fee (CM-fee), construction management at risk (CM-at risk), and private-public partnerships (PPP) contracting methods.

Estimates for process facilities center on mechanical and chemical process equipment, and they have significant amounts of piping, instrumentation, and process controls involved. As such, this recommended practice may apply to portions of other industries, such as pharmaceutical, utility, water treatment, metallurgical, converting, and similar industries.

Most plants also have significant electrical power equipment (e.g., transformers, switchgear, etc.) associated with them. As such, this RP also applies to electrical substation projects, either associated with the process plant, as part of power transmission or distribution infrastructure, or supporting the power needs of other facilities. This RP excludes power generating facilities and high-voltage transmission.

This RP specifically does not address cost estimate classification in non-process industries such as commercial building construction, environmental remediation, transportation infrastructure, hydropower, “dry” processes such as assembly and manufacturing, “soft asset” production such as software development, and similar industries. It also does not specifically address estimates for the exploration, production, or transportation of mining or hydrocarbon materials, although it may apply to some of the intermediate processing steps in these systems.

The cost estimates covered by this RP are for engineering, procurement, and construction (EPC) work only. It does not cover estimates for the products manufactured by the process facilities, or for research and development work in support of the process industries. This guideline does not cover the significant building construction that may be a part of process plants.

This guideline reflects generally-accepted cost engineering practices. This recommended practice was based upon the practices of a wide range of companies in the process industries from around the world, as well as published references and standards. Company and public standards were solicited and reviewed, and the practices were found to have significant commonalities. [4,5,6,7] These classifications are also supported by empirical process industry research of systemic risks and their correlation with cost growth and schedule slip [8].

COST ESTIMATE CLASSIFICATION MATRIX FOR THE PROCESS INDUSTRIES

A purpose of cost estimate classification is to align the estimating process with project stage-gate scope development and decision-making processes.
Table 1 provides a summary of the characteristics of the five estimate classes. The maturity level of project definition is the sole determining (i.e., primary) characteristic of class. In Table 1, the maturity is roughly indicated by a percentage of complete definition; however, it is the maturity of the defining deliverables that is the determinant, not the percent. The specific deliverables, and their maturity or status are provided in Table 3. The other characteristics are secondary and are generally correlated with the maturity level of project definition deliverables, as discussed in the generic RP [1]. The post sanction classes (Class 1 and 2) are only indirectly covered where new funding is indicated. Again, the characteristics are typical but may vary depending on the circumstances.

<table>
<thead>
<tr>
<th>Primary Characteristic</th>
<th>Secondary Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATE CLASS</td>
<td>MATURITY LEVEL OF PROJECT DEFINITION DELIVERABLES</td>
</tr>
<tr>
<td></td>
<td>Expressed as % of complete definition</td>
</tr>
<tr>
<td>Class 5</td>
<td>0% to 2%</td>
</tr>
<tr>
<td>Class 4</td>
<td>1% to 15%</td>
</tr>
<tr>
<td>Class 3</td>
<td>10% to 40%</td>
</tr>
<tr>
<td>Class 2</td>
<td>30% to 75%</td>
</tr>
<tr>
<td>Class 1</td>
<td>65% to 100%</td>
</tr>
</tbody>
</table>

Table 1 – Cost Estimate Classification Matrix for Process Industries

This matrix and guideline outline a cost estimate classification system that is specific to the process industries. Refer to Recommended Practice 18R-97 [1] for a general matrix that is non-industry specific, or to other cost estimate classification RPs for guidelines that will provide more detailed information for application in other specific industries. These will provide additional information, particularly the Estimate Input Checklist and Maturity Matrix which determines the class in those industries. See Professional Guidance Document 01, Guide to Cost Estimate Classification. [16]

Table 1 illustrates typical ranges of accuracy ranges that are associated with the process industries. The +/- value represents typical percentage variation at an 80% confidence interval of actual costs from the cost estimate after application of appropriate contingency (typically to achieve a 50% probability of project cost overrun versus underrun) for given scope. Depending on the technical and project deliverables (and other variables) and risks associated with each estimate, the accuracy range for any particular estimate is expected to fall into the ranges identified. However, this does not preclude a specific actual project result from falling outside of the indicated range of ranges identified in Table 1. In fact, research indicates that for weak project systems and complex or otherwise risky projects, the high ranges may be two to three times the high range indicated in Table 1. [17]

In addition to the degree of project definition, estimate accuracy is also driven by other systemic risks such as:
- Level of familiarity with technology.
- Unique/remote nature of project locations and conditions and the availability of reference data for those.
• Complexity of the project and its execution.
• Quality of reference cost estimating data.
• Quality of assumptions used in preparing the estimate.
• Experience and skill level of the estimator.
• Estimating techniques employed.
• Time and level of effort budgeted to prepare the estimate.
• Market and pricing conditions.
• Currency exchange.
• The accuracy of the composition of the input and output process streams.

Systemic risks such as these are often the primary driver of accuracy, especially during the early stages of project definition. As project definition progresses, project-specific risks (e.g., risk events and conditions) become more prevalent and also drive the accuracy range. Another concern in estimates is potential organizational pressure for a predetermined value that may result in a biased estimate. The goal should be to have an unbiased and objective estimate both for the base cost and for contingency. The stated estimate ranges are dependent on this premise and a realistic view of the project. Failure to appropriately address systemic risks (e.g., technical complexity) during the risk analysis process, impacts the resulting probability distribution of the estimated costs, and therefore the interpretation of estimate accuracy.

Figure 1 illustrates the general relationship trend between estimate accuracy and the estimate classes (corresponding with the maturity level of project definition). Depending upon the technical complexity of the project, the availability of appropriate cost reference information, the degree of project definition, and the inclusion of appropriate contingency determination, a typical Class 5 estimate for a process industry project may have an accuracy range as broad as -50% to +100%, as narrow as -20% to +30%. However, note that this is dependent upon the contingency included in the estimate appropriately quantifying the uncertainty and risks associated with the cost estimate. Refer to Table 1 for the accuracy ranges conceptually illustrated in Figure 1. [18]

Figure 1 also illustrates that the estimating accuracy ranges overlap the estimate classes. There are cases where a Class 5 estimate for a particular project may be as accurate as a Class 3 estimate for a different project. For example, similar accuracy ranges may occur if the Class 5 estimate of one project that is based on a repeat project with good cost history and data and, whereas the Class 3 estimate for another is for a project involving new technology. It is for this reason that Table 1 provides ranges of accuracy values. This allows consideration of the specific circumstances inherent in a project and an industry sector to provide realistic estimate class accuracy range percentages. While a target range may be expected for a particular estimate, the accuracy range should always be determined through risk analysis of the specific project and should never be pre-determined. AACE has recommended practices that address contingency determination and risk analysis methods. [19]

If contingency has been addressed appropriately approximately 80% of projects should fall within the ranges shown in Figure 1. However, this does not preclude a specific actual project result from falling inside or outside of the indicated range of ranges identified in Table 1. As previously mentioned, research indicates that for weak project systems, and/or complex or otherwise risky projects, the high ranges may be two to three times the high range indicated in Table 1.
DETERMINATION OF THE COST ESTIMATE CLASS

For a given project, the determination of the estimate class is based upon the maturity level of project definition based on the status of specific key planning and design deliverables. The percent design completion may be correlated with the status, but the percentage should not be used as the class determinate. While the determination of the status (and hence the estimate class) is somewhat subjective, having standards for the design input data, completeness and quality of the design deliverables will serve to make the determination more objective.