Certified Estimating Professional (CEP) Certification Review Course

Presented By:

[Section Name]
[Instructor Name, CCP]
[Event Dates]

A Product of the Education Board Submit questions, comments or updates to Manager, Education: education@aacei.org

web.aacei.org

Section Index

CEP Certification Review

SECTION		Slide
Introduction Definitions and Terminology		12 22
1 SUPPORTING SKILLS & KNO	WLEDGE	36
 2.1 GENERAL ESTIMATING CON Estimate Classification Structuring the Estimate 	ons & Requirements	65 71 120
 Reliability Limitation Risk Analysis/Contin Estimate Plan/Revie Estimate Review/Va 	ustments, Allowances as & Estimate Accuracy agency w/Mega Project lidation Basics resenting the Estimate	166 174 232 267 312 332 363 401 431 471
2.3 OTHER ESTIMATING ISSUES		487
3.0 ADDITIONAL STUDIES • Project History		522 536

2 Copyright 2021 web.aacei.org

Benefits of Certification

- An investment in your career
- Officially and publicly recognizes professional capability
- Demonstrates a high level of competence & ethical practice
- Identifies to employers and clients your capabilities
- Recertification ensures that you continue to develop
- Shows that you are deemed qualified and capable of professionally applying the principles of cost engineering

AACE Certification

- CST Certified Scheduling Technician
- CCT Certified Cost Technician
- CCP Certified Cost Professional (Technical Paper required)
- CEP Certified Estimating Professional
- CFCC Certified Forensic Claims Consultant (Written report or paper required)
- DRMP Decision & Risk Management Professional

Why We Are Here – CEP Eligibility

8 years validated industry related experience

OR

- 4 years validated industry related experience <u>plus</u> 4-year industry related college degree
 - There is no technical paper requirement
 - All exam candidates must accept AACE's Canon of Ethics
 - Fees are payable upon registration
 - There will be an eligibility documentation review
 - Fee payable in US\$ is \$500 for Members and \$625 for Non-Members
 - Recertification is required every 3 years by earned credits or exam

- EVP Earned Value Professional
- PSP Planning & Scheduling Professional

Why We Are Here – Workshop Objectives

- Identify certification eligibility requirements
- To prepare eligible candidates for the CEP exam by reviewing the AACE recommended study materials
- Present overviews of subject matter that MAY be included in the exam
- Work through various samples of the different types of questions for each subject
- Present a guide to writing the Memo portion of the exam

Why We Are Here – CEP Exam Structure

- Basis of Content: AACE definitions, CEP Certification Study Guide, S&k6, TCM and RP References
- CEP Exam is conducted through Kryterion computer based testing centers
- 5 hours maximum allowed
- 120 randomized questions comprising:-
 - Continuous multiple choice questions
 - Compound questions and complex estimating calculations which test the candidate's Cost Estimating knowledge, principles and practices
- Memo writing assignment chosen from onscreen list
- No break once the session is launched
- Closed book environment

Primary Reference Materials

- Certified Estimating Professional Study Guide, 2nd Edition
- Skills & Knowledge of Cost Engineering, 6th Edition
- AACE International Total Cost Management Framework
- AACE International Recommended Practice 46R-11 (Skills & Knowledge for Estimating)
- © CEP Examinee Format of Definitions (RP 10S-90)

CEP Certification Study Guide

Each content section addressed in the CEP Certification Study Guide is organized as follows:

Introduction
Learning Objectives
Reference/Study Material
Terms to Know
Key Points for Review
Summary
Sample Questions
Sample Question & Answers

Recommended Practices (RP)

RP#	RP Title
10S-90	Cost Engineering Terminology
17R-97	Cost Estimate Classification System
18R-97	Cost Estimating Classification System – As Applied in EPC for the Process Industries
19R-97	Estimate Preparation Costs in the Process Industries
34R-05	Basis of Estimate
36R-08	Development of Cost Estimate Plans – As Applied in EPC for the Process Industries
46R-11	Required Skills and Knowledge of Project Cost Estimating
56R-08	Cost Estimate Classification System – As Applied for in the Building and General Construction Industries
58R-10	Escalation Estimating Principles and Methods Using Indices
59R-10	Development of Factored Cost Estimates – As Applied in EPC and Construction for the Process Industries

What You Will Need to Know

#	Question
1.	What is estimating?
2.	What is the role of the cost estimator?
3.	What is budgeting?
4.	What is quantification?
5.	What are the different classes of estimates?
6.	What is the difference between costing and pricing?
7.	What are the different types of parametric methodologies?
8.	What are codes of accounts and their use?
9.	What is Building Information Modeling (BIM)?
10.	What the fundamental considerations for internationalization?
11.	What is the difference between accuracy and contingency?
12.	What are cost estimating relationships (CERs)?
13.	What are locations factors?

What You Will Need to Know (cont.)

#	Question
14.	What are life cycle costs?
15.	What are the differences between direct and indirect costs?
16.	What is the difference between a Hand factor and a Lang factor?
17.	What is the difference between a work package and an assembly?
18.	What are the keys to cost and scheduling integration?
19.	What are some of the challenges for change order estimating?
20.	What is the difference between a composite and an average crew rate?
21.	What are the differences between bare rates and burdened rates?
22.	What is the difference between material unit price and material price?
23.	What is the difference between unbalancing and front-end loading?
24.	What are the different types of Work Breakdown Structures (WBS) and use?
25.	What is the difference between labor productivity and a labor productivity factor?
26.	How does change order estimating differ from project estimating?
27.	What is the importance of project cash flow?

Copyright 2020 11 web.aacei.org

Skills and Knowledge

AACE International defines *Cost Engineering* as:

"that area of <u>engineering practice</u> where engineering judgment and experience are utilized in the application of <u>scientific principles</u> and techniques to the problems of cost estimating, cost control, and profitability"

- "Cost" Engineering can be divided into three components:
 - Cost Estimating
 - Cost Control
 - Cost Technology

- "Cost" Engineering can be divided into three components:
 - Cost Estimating
 - Quantifying capital costs of investment alternatives
 - Costing design and execution alternatives for optimization
 - Providing estimates for funding decisions and cost control
 - Cost Control
 - Cost Technology

- "Cost" Engineering can be divided into three components:
 - Cost Estimating
 - Cost Control
 - Implementing responsive cost feedback systems
 - Analysis of trends and the impact of management decisions
 - Developing and recommending corrective action(s)
 - Cost Technology

- "Cost" Engineering can be divided into three components:
 - Cost Estimating
 - Cost Control
 - Cost Technology
 - Producing estimating methods and cost data
 - Development of cost control techniques/tools
 - Measurement of cost levels and trends

Cost Engineering (including Estimating) is an *essential part*of any project in any industry.

- Cost Engineering evolved out of the need for sound business decisions regarding projects.
- The basic reasons behind projects are primarily economic:
 - What is the maximum return that can be attained for the money invested by a company
 - What product How Much Where When
 - Obtaining the answers to these questions requires economic studies which in turn require cost estimates

- Purpose of an Estimate:
 - Establish Target Budget for a Project
 - Define the Scope of a Project
 - Assist in the Evaluation of Rate of Return on Investment
 - Assist in the Projection of Cash Flow
 - Establish Basis for Cost Control during Project Execution

Introduction

Definition of a Capital Project

"An endeavor with a <u>specific objective</u> to be met within the <u>prescribed time and dollar limitations</u> and which has been assigned for definition or execution."

(AACE 10S-90)

- Capital Project
 - Defined beginning and ending
 - Takes time and resources to accomplish
 - Unique undertaking
 - Even if technical scope is the same, differences in location or time can be important

Capital Project Estimate

 The challenge for the estimator is to evaluate the unique combination of required resources to provide a cost estimate for a project to be completed in the future

Capital Project Estimating

- Record all sources of information, methods of calculation, pricing basis, and assumptions
- Base estimate on as much fact as possible
- Opinion, judgment, and assumptions are required because future events are being considered
- Some level of error must be accepted
- Basic estimating techniques are well established
- This seminar is intended to summarize and review the estimating process and relevant estimating techniques

web.aacei.org

What is a Cost Estimate ?

- "An evaluation of all the costs of the elements of a project, or effort, as defined by an agreed-upon scope." (AACE 10S-90)
- "To evaluate, and calculate, the approximate quantity, cost, or extent of a given item, or task. The product of a cost estimating procedure, which specifies the expected dollar cost required to perform a stipulated task, or to acquire a specific item. A cost estimate may constitute a single value or a range of values." (SCEA Glossary)

Project cost estimators:

- Predict the cost of a project for a defined scope, to be completed at a defined location and point of time in the future.
- Assist in the economic evaluation of potential projects by supporting the development of project <u>budgets</u>, project <u>resource requirements</u>, and <u>value engineering</u>.
- Support project control by providing input to the <u>cost control</u> <u>baseline</u>.
- Collect and analyze data on all of the factors than can affect project costs, i.e., materials, equipment, labor, location, duration of the project, and other project requirements

Project Cost Estimators (cont.)

According to AACE International Recommended Practice 10S-90, Cost Engineering Terminology, Cost Estimating is defined as:

"The predictive **process** used to **quantify, cost**, and **price** the **resources** required by the **scope** of an investment option, activity, or project. Cost estimating is a process used to **predict** uncertain future **costs**. In that regard, a goal of cost estimating is to minimize the **uncertainty** of the estimate given the level and quality of scope definition. The outcome of cost estimating ideally includes both an **expected cost** and a **probabilistic cost** distribution. As a predictive process, historical reference cost data (where applicable) improve the reliability of cost estimating. Cost estimating, by providing the **basis for budgets**, also shares a goal with cost control of **maximizing the probability of the actual cost outcome** being the same as predicted."

- Misconceptions about the definition of an estimate:
 - An estimate is the prediction of the actual costs of a project
 - No, the only thing we absolutely know about an estimate is that it is wrong
 - An estimate is the prediction of the "should costs" of a project
 - No, an estimate predicts what a project will cost, not what it should cost

Cost Estimate:

- A cost estimate is the prediction of the probable costs of a project, based on a given and documented scope, to be completed at a defined location and point of time in the future.
 - Involves assumptions and unknowns
 - Involves probabilities (and therefore ranges of costs)
 - Involves a given scope (contingency covers variability within the defined scope - not changes in scope)

- Accuracy
- Confidence Level
- Contingency

Accuracy (Estimate):

- The "closeness" to the actual costs (excluding scope changes, extraordinary developments, or disaster-like occurrences).
- Often expressed as +X% and -Y%, meaning the actual costs will probably lie between:

Estimated Costs + X%, and Estimated Costs - Y%,

where "Estimated Costs" are expressed without contingency.

Confidence Level:

- The probability that the final actual cost of a project will be within the stated range of the estimate.
- The probability that the final actual cost of a project will be less than or equal to the estimated cost plus contingency.

Contingency:

- A special monetary provision in the budget of a project to cover the uncertainties, and unforeseeable elements of time/cost, within the scope of a project to achieve a specific confidence level.
- Contingency excludes:
 - Changes in scope, and
 - Unforeseen major events such as:
 - earthquakes, hurricanes,
 - prolonged labor strikes, etc.

This Photo by Unknown Author is licensed under CC BY-NC-ND

- Battery Limits
- Offsites Facilities

Battery Limits:

- Geographic boundaries, real or imaginary, enclosing a plant or (process) unit of a plant.
- The term is generally used to describe a process-oriented unit of a plant, and excludes facilities such as utilities, storage, auxiliary facilities, office buildings, etc. (Onsites)
- The term is sometimes used in reference to a single piece of equipment to refer to a small geographic area around the piece of equipment which includes an amount of piping, controls, foundation, etc. which are directly associated with the piece of equipment.

Offsites Facilities:

- Facilities located outside of the Battery Limits of a plant, which provide support for the process units.
- These may include (but are not limited to):
 - utilities,
 - storage,
 - administrative facilities,
 - interconnecting pipeways,
 - etc.

Capital Asset:

- Assets of a permanent nature having continued value.
- Must be depreciated over a pre-determined "lifetime".

Section 1.0
Supporting Skills and Knowledge

web.aacei.org

